C或PHP中的Rust
我的基本出发点就是写一些可以编译的Rust代码到一个库里面,并写为它一些C的头文件,在C中为被调用的PHP做一个拓展。虽然并不是很简单,但是很有趣。
Rust FFI(foreign function interface)
我所做的第一件事情就是摆弄Rust与C连接的Rust的外部函数接口。我曾用简单的方法(hello_from_rust)写过一个灵活的库,伴有单一的声明(a pointer to a C char, otherwise known as a string),如下是输入后输出的“Hello from Rust”。
#![feature(libc)]
extern crate libc;
use std::ffi::CStr;
#[no_mangle]
pub extern "C" fn hello_from_rust(name: *const libc::c_char) {
let buf_name = unsafe { CStr::from_ptr(name).to_bytes() };
let str_name = String::from_utf8(buf_name.to_vec()).unwrap();
let c_name = format!("Hello from Rust, {}", str_name);
println!("{}", c_name);
}
我从C(或其它!)中调用的Rust库拆分它。这有一个接下来会怎样的很好的解释。
编译它会得到.a的一个文件,libhello_from_rust.a。这是一个静态的库,包含它自己所有的依赖关系,而且我们在编译一个C程序的时候链接它,这让我们能做后续的事情。注意:在我们编译后会得到如下输出:
note: link against the following native artifacts when linking against this static library
note: the order and any duplication can be significant on some platforms, and so may need to be preserved
note: library: Systemnote: library: pthread
note: library: c
note: library: m
这就是Rust编译器在我们不使用这个依赖的时候所告诉我们需要链接什么。 从C中调用Rust
既然我们有了一个库,不得不做两件事来保证它从C中可调用。首先,我们需要为它创建一个C的头文件,hello_from_rust.h。然后在我们编译的时候链接到它。
下面是头文件:
len = spprintf(&strg, 0, "Congratulations! You have successfully modified ext/%.78s/config.m4. Module %.78s is now compiled into PHP.", "hello_from_rust", arg);
RETURN_STRINGL(strg, len, 0);
}
注意:我添加了hello_from_rust("Jared (fromPHP!!)!");。
现在,我们可以试着建立我们的扩展:
$ phpize
$ ./configure
$ sudo make install
就是它,生成我们的元配置,运行生成的配置命令,然后安装该扩展。安装时,我必须亲自使用sudo,因为我的用户并不拥有安装目录的 php 扩展。
现在,我们可以运行它啦!
$ php hello_from_rust.php
Functions available in the test extension:
confirm_hello_from_rust_compiled
Hello from Rust, Jared (from PHP!!)!
Congratulations! You have successfully modified ext/hello_from_rust/config.m4. Module hello_from_rust is now compiled into PHP.
Segmentation fault: 11
还不错,php 已进入我们的 c 扩展,看到我们的应用方法列表并且调用。接着,c 扩展已进入我们的 rust 库,开始打印我们的字符串。那很有趣!但是......那段错误的结局发生了什么?
正如我所提到的,这里是使用了 Rust 相关的 println! 宏,但是我没有对它做进一步的调试。如果我们从我们的 Rust 库中删除并返回一个 char* 替代,段错误就会消失。
这里是 Rust 的代码:
[U]复制代码[/U] 代码如下:
#![crate_type = "staticlib"]
#![feature(libc)]
extern crate libc;
use std::ffi::{CStr, CString};
#[no_mangle]
pub extern "C" fn hello_from_rust(name: *const libc::c_char) -> *const libc::c_char {
let buf_name = unsafe { CStr::from_ptr(name).to_bytes() };
let str_name = String::from_utf8(buf_name.to_vec()).unwrap();
let c_name = format!("Hello from Rust, {}", str_name);
CString::new(c_name).unwrap().as_ptr()
}
并变更 C 头文件:
len = spprintf(&strg, 0, "Congratulations! You have successfully modified ext/%.78s/config.m4. Module %.78s is now compiled into PHP.", "hello_from_rust", arg);
RETURN_STRINGL(strg, len, 0);
} 无用的微基准
那么为什么你还要这样做?我还真的没有在现实世界里使用过这个。但是我真的认为斐波那契序列算法就是一个好的例子来说明一个PHP拓展如何很基本。通常是直截了当(在Ruby中):
def fib(at) do
if (at == 1 || at == 0)
return at
else
return fib(at - 1) + fib(at - 2)
end
end
而且可以通过不使用递归来改善这不好的性能:
def fib(at) do
if (at == 1 || at == 0)
return at
elsif (val = @cache[at]).present?
return val
end
total = 1
parent = 1
gp = 1
(1..at).each do |i|
total = parent + gp
gp = parent
parent = total
end
return total
end
那么我们围绕它来写两个例子,一个在PHP中,一个在Rust中。看看哪个更快。下面是PHP版:
def fib(at) do
if (at == 1 || at == 0)
return at
elsif (val = @cache[at]).present?
return val
end
total = 1
parent = 1
gp = 1
(1..at).each do |i|
total = parent + gp
gp = parent
parent = total
end
return total
end
这是它的运行结果:
$ time php php_fib.php
real 0m2.046s
user 0m1.823s
sys 0m0.207s
现在我们来做Rust版。下面是库资源:
[U]复制代码[/U] 代码如下:
#![crate_type = "staticlib"]
fn fib(at: usize) -> usize {
if at == 0 {
return 0;
} else if at == 1 {
return 1;
}
let mut total = 1;
let mut parent = 1;
let mut gp = 0;
for _ in 1 .. at {
total = parent + gp;
gp = parent;
parent = total;
}